NITROXIDE CHEMISTRY. PART XVII [1]. REACTION OF BISTRIFLUOROMETHYL NITROXIDE WITH SOME HALOGENOALKANES AND RELATED ALKENES

R.E. BANKS, J.A.BERNARDIN, R.N. HASZELDINE, B. JUSTIN and A. VAVAYANNIS [2]

Chemistry Department, The University of Manchester Institute of Science and Technology, Manchester M60 1QD (Great Britain)

SUMMARY

The mono(bistrifluoromethylamino-oxy)alkanes $\left(\mathrm{CF}_{3}\right){ }_{2}$ NOCXYZ $(\mathrm{X}=\mathrm{Y}=\mathrm{F}, \mathrm{Z}=\mathrm{Cl} ; \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{F}$ or Cl , $\mathrm{Z}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{Y}=\mathrm{F}, \mathrm{Z}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Cl}$ or $\mathrm{Br}, \mathrm{Z}=\mathrm{CF}_{3} ;$ $X=C l, Y=B r, Z=\mathrm{CF}_{3}$) have been synthesised by treatment of appropriate halogenoalkanes, CHXYZ, with bistrifluoromethyl nitroxide. The 1,2-bis(bistrifluoromethylamino-oxy)alkanes $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCH}_{2} \mathrm{CXYON}\left(\mathrm{CF}_{3}\right)_{2}$ were obtained as by-products in the reactions involving the ethanes $\mathrm{CH}_{3} \mathrm{CHXY}$ ($\mathrm{X}=\mathrm{H}$, $\mathrm{Y}=\mathrm{F}$ or $\mathrm{Cl} ; \mathrm{X}=\mathrm{Y}=\mathrm{F}$); these products, like their analogues $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHFCF}_{2} \mathrm{ON}\left(\mathrm{CF}_{3}\right)_{2}$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCH}_{2} \mathrm{CCl}_{2} \mathrm{ON}\left(\mathrm{CF}_{3}\right)_{2}$, were also prepared via attack of bistrifluoromethyl nitroxide on the corresponding ethenes.

INTRODUCTION

Work on reactions between bistrifluoromethyl nitroxide and halogeno-methanes and -ethanes was undertaken as part of a methodical survey of attack by the nitroxide on organic substrates [3]. In particular, the intention was to extend knowledge of the action of the nitroxide on alkanes [4].

RESULTS AND DISCUSSION

Details of the synthesis in excellent yield of the (bistrifluoromethylamino-oxy)trihalogenomethanes $\left(\mathrm{CF}_{3}\right){ }_{2} \mathrm{NOCX}_{3}(\mathrm{X}=\mathrm{Cl}, 99.5 \% ; \mathrm{X}=\mathrm{Br}, 98 \%)$ via attack on chloroform and bromoform by bistrifluoromethyl nitroxide at room temperature were reported [5] shortly before our investigation began. As expected from knowledge of the ease of homolytic attack on chloro- and fluoro-alkanes $[6,7]$, the nitroxide, a pseudo-halogen 'instant' radical resembling chlorine atom, proved much less capable of abstracting hydrogen from chlorodifluoromethane (see Scheme 1) and apparently incapable of doing so from fluoroform during 3 weeks at $80^{\circ} \mathrm{C}$.

$$
\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCF}_{2} \mathrm{Cl} \underline{b}
$$

Scheme 1
a Equimolar ratio. \underline{b} Yields (based on the nitroxide) : 18\% after 3 weeks at $80^{\circ} \mathrm{C} ; 23 \%$ after 1 week at $100{ }^{\circ} \mathrm{C}$.

Deactivation of β-hydrogen by fluorine substituents $[6,7]$ was clearly evident in reactions between bistrifluoromethyl nitroxide and the halogenoethanes $\mathrm{CF}_{2} \mathrm{ClCH}_{3}, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Cl}$, and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Br}$, all of which were attacked extremely slowly at $50{ }^{\circ} \mathrm{C}$. The first substrate underwent only ca. 5% reaction with the nitroxide at $80^{\circ} \mathrm{C}$ during 3 weeks [8], and forcing conditions were employed with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Cl}\left(100{ }^{\circ} \mathrm{C}\right.$, 15 days) and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Br}\left(150{ }^{\circ} \mathrm{C}, 15\right.$ days $)$ in order to obtain samples of the derivatives $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHXCF}_{3}(\mathrm{X}=\mathrm{Cl}$, Br) within a reasonable time. (In the case of the bromocompound this caused deep-seated decomposition, as indicated by the presence of free bromine in the complex
product). Replacement of hydrogen in 1-chloro-2,2,2trifluoroethane by bromine decreased the activation energy for removal of the remaining α-hydrogen, attack of the nitroxide on $\mathrm{CF}_{3} \mathrm{CHClBr}$ occurring at room temperature to give $\left(\mathrm{CF}_{3}\right){ }_{2} \mathrm{NOCClBrCF}_{3}$ quantitatively after 2 weeks.

Reactions involving bistrifluoromethyl nitroxide and chloro-, fluoro-, and 1,1-difluoro-ethane also produced no surprises : attack at α-hydrogen [6] occurred smoothly at ambient temperature with the first two substrates, and at $80^{\circ} \mathrm{C}$ in the case of the difluoro-compound, producing a mixture of mono- (mainly) and bis-(bistrifluoromethylaminooxy) ethanes (see Scheme 2). The dehydrogenation leg of the reaction mechanism parallels that established for alkanes [4] and aralkanes [9]; authentic samples of the 2:1 nitroxide:olefin adducts were prepared in separate experiments, which were extended to include the halogenoethenes $\mathrm{CH}_{2}=\mathrm{CCl}_{2}$ and $\mathrm{CHF}=\mathrm{CF}_{2}\left[\longrightarrow\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCH}_{2} \mathrm{CCl}_{2} \mathrm{ON}\left(\mathrm{CF}_{3}\right)_{2}\right.$ (98.5% yield) and $\left.\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHFCF} 2 \mathrm{ON}\left(\mathrm{CF}_{3}\right)_{2}(97 \%)\right]$ as a prelude to a kinetic study of saturation of ethenes by bistrifluoromethyl nitroxide [10].

EXPERIMENTAL

N.m.r. Data

Unless stated otherwise, n.m.r. spectra were recorded with a Perkin-Elmer R10 instrument operating at 56.46 (${ }^{19} \mathrm{~F}$) and $60\left({ }^{1} \mathrm{H}\right) \mathrm{MHz}$ with trifluoroacetic acid and benzene, respectively, as external references. Absorptions to high field of reference 'spikes' have been assigned negative chemical shift values.

Reactions of Bistrifluoromethyl Nitroxide

(a) General procedure

The nitroxide was condensed, in vacuo, onto the frozen substrate contained in a Pyrex ampoule cooled to $-196{ }^{\circ} \mathrm{C}$; the ampoule was then sealed by fusion of the neck (for reactions at elevated temperatures) or closure of a PTFE

Scheme 2
a Based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO} \cdot \underline{b}$ In separate experiments between ethenes and the nitroxide, these adducts were obtained in 98, 99 and 97\% yield, respectively.
needle valve (Rotaflo or Fischer-Porter type for experiments at room temperature) and placed in a steel guard to warm to ambient temperature. After being kept at reaction temperature for an appropriate period in the guard (occasional inspection of the ampoule enabled the progress of reaction to be assessed owing to diminution of the purple colour of the nitroxide as it was consumed), the ampoule was recooled to $-196{ }^{\circ} \mathrm{C}$ and opened to a vacuum system. Volatile product was transferred to the system and subjected to trap-to-trap fractional condensation at $1-2 \mathrm{mmHg}$ pressure; the fractions were analysed by i.r. spectroscopy, g.l.c., and molecular weight determination (Regnault's method). In the case of a hydrogen-abstraction reaction (Table 1), final isolation of pure (bistrifluoromethylamino-oxy)alkane material involved removal of NN-bistrifluoromethylhydroxylamine with cold aqueous sodium hydroxide.
TABLE 1

Substrate $(\mathrm{g}, \mathrm{mmol})$	$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO} \cdot \\ & (\mathrm{~g}, \mathrm{mmol}) \end{aligned}$	```Reaction period and temp (}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{) (ampoule size, cm}\mp@subsup{}{}{3}\mathrm{)```	Products $(\mathrm{g}, \mathrm{mmol}, \%)$
$\begin{aligned} & \mathrm{CHF}_{2} \mathrm{Cl} \\ & (2.85,32.9) \end{aligned}$	5.26, 31.3	7d, 100 (300)	$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCF}_{2} \mathrm{Cl}(\mathrm{nc})^{\mathrm{a}} \\ & (0.91,3.60,23) \\ & \mathrm{CHF}_{2} \mathrm{Cl} \\ & (2.54,29.4,89) \\ & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO} \cdot \underline{\mathrm{a}} \\ & (4.04,24.0,77) \\ & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOH} \\ & (0.61,3.61,23) \end{aligned}$
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \\ & (1.26,19.5) \end{aligned}$	3.93, 23.4	$24 \mathrm{~h}, 21$ (70)	$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHClCH}_{3}(\mathrm{nc})^{\underline{b}} \\ & (1.94,8.4,72) \\ & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHCl}_{2} \mathrm{ON}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{c} \\ & (0.35,0.88,15) \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \\ & (0.62,9.61,49) \\ & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOH} \\ & (1.84,10.9,93) \end{aligned}$

TABLE I (cont.)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~F}$
$(0.96,20.0)$
+
$\mathrm{CH}_{2}=\mathrm{CH}_{2}-$
$(0.28,1.00)$
10 d, 80 (300)
$15 \mathrm{~d}, 100$ (300)
$9.72,57.9$
$5.29,31.5$
4.03, 24.0
$\mathrm{CH}_{3} \mathrm{CHF}_{2}{ }^{\mathrm{f}}$
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOH}$
$(3.97,23$.
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHCl}_{3}(\mathrm{nc})$
$(0.5,1.75,14) \mathrm{s}$
$\left[\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Cl},\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO} \cdot,\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOH}\right.$, unidentified]

$$
15 \mathrm{~d}, 150(300)
$$

$$
\begin{aligned}
& \bar{o} \\
& \bar{\sim} \\
& \dot{0} \\
& \pm
\end{aligned}
$$

$5.42,32.3$
$7.75,46.1$
> cold $1 \mathrm{M}-\mathrm{NaOH}$ aq. to remove $\left(\mathrm{CF}_{3}\right){ }_{2} \mathrm{NOH}$.
TABLE 2
Properties of new mono(bistrifluoromethylamino-oxy)-derivatives (-indicates not determined)

Compound	Elemental analyses and mol. w.t. ${ }^{\text {b }}$					N.m.r. parameters	
[b.p., ${ }^{\circ} \mathrm{C}(\mathrm{mmHg})^{\text {a }}$]	C	H	F	N	M	${ }^{\delta}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO}-$	Others ${ }^{\text {c }}$
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCF}_{2} \mathrm{Cl}$	Found: 14.5	0.0	-	5.6	254	+9.0	$\delta_{\mathrm{CF}_{2}}+39.1$
33 (765)	Requires: 14.2	0.0		5.5	253.5	($t, 8 \mathrm{~Hz}$)	(sept.)
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHClCH}_{3}$	Found: 20.8	2.1	-	-	231	$+9.0$	
74 (764)	Requires: 20.7	1.7			231.5	(v.br. $\mathrm{s}^{\text {d }}$)	$\delta_{\mathrm{CH}_{3}}-5.05(\mathrm{~d}, 6 \mathrm{~Hz})$
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHFCH}_{3}$	Found: 22.6	2.1	-	6.4	215	+8.3	$\delta_{\text {CF }}-46.6$ (m) ,
46 (754)	Requires: 22.3	1.9		6.5	215	(br. s ${ }^{\text {d }}$)	$\begin{aligned} & \delta_{\mathrm{CH}}-1.4(\mathrm{dq} ; \\ & \left.\mathrm{J}_{\mathrm{HF}}^{2} 60, \mathrm{~J}_{\mathrm{HH}} 5 \mathrm{~Hz}\right), \\ & \delta_{\mathrm{CH}_{3}}-5.6\left(\mathrm{dd} ; \mathrm{J}_{\mathrm{HF}}^{3}\right. \\ & 18 \mathrm{~Hz}) \end{aligned}$
$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCF}_{2} \mathrm{CH}_{3} \\ & 44(754) \end{aligned}$	Found: 20.8 Requires: 20.6	1.4 1.3	-	6.3 6.0	234 233	+8.9 $(t, 8.5 \mathrm{~Hz})$	$\begin{aligned} & \delta_{\mathrm{CF}_{2}}+3.7(\mathrm{~m}), \\ & \delta_{\mathrm{CH}_{3}}-5.12\left(\mathrm{t} ; \mathrm{J}_{\mathrm{HF}}^{3}\right. \\ & 14 \mathrm{~Hz}) \end{aligned}$
$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHClCF}_{3} \\ & 60(758) \end{aligned}$	Found: Requires:		$\begin{aligned} & 59.8 \\ & 59.8 \end{aligned}$		$\begin{aligned} & 285.5^{\frac{f}{f}} \\ & 285.5 \end{aligned}$	$\begin{gathered} +9.0 \\ (\mathrm{v} . \mathrm{br} . \mathrm{s}, \mathrm{e}, \mathrm{e}) \end{gathered}$	$\begin{aligned} & \delta_{\mathrm{CF}_{3}}-2.3(\mathrm{br} . \mathrm{s}), \\ & \delta_{\mathrm{CH}}\left(\mathrm{p}^{\left.-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)}\right. \\ & -1.38\left(\mathrm{q} ; \mathrm{J}_{\mathrm{HF}}{ }^{2} 4.5 \mathrm{~Hz}\right)^{\mathrm{e}} \end{aligned}$

$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHBrCF}_{3}$
$73(758)$
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCClBrCF}_{3}$

$$
95.5(760)
$$

$\stackrel{+9.8}{(\mathrm{v} . \mathrm{br} . \mathrm{s}} \mathrm{d}, \mathrm{e}$)

$$
\begin{gathered}
+12.0 \\
\left(v . b r \cdot m^{d}\right)
\end{gathered}
$$

330 g
330
$\begin{array}{cc}1 & \\ & \infty \\ \dot{n} & \dot{i n}\end{array}$
1
Found: -
Requires:

앙

$$
\begin{aligned}
& { }^{c} \delta_{\mathrm{H}} \text { (p.p.m.) w.r.t. } \\
& \text { the } \\
& \begin{array}{l}
\text { o variable temperature studies } \\
\text { By mass spectrometry }\{\underline{m} / \mathrm{e}
\end{array} \\
& \text { pue ' (\%ool' } \\
& \text { Ci-containing ions) }\} \text { 。 } \\
& \text { 6.3\%], } \\
& \left(\mathrm{CF}_{3}{ }^{+}, 100 \%\right. \text {) (correct isotopic abundances were obtained } \\
& { }^{-} \text {Siwoloboff's method. }^{b} \text { Regnault's method unless indicated otherwise. }{ }^{c} \delta_{H} \text { (p.p.m.) w.r.t. } \\
& \mathrm{C}_{6} \mathrm{H}_{6} \text { (ext.) unless st } \\
& \text { presence of the chiral } \\
& \text { were undertaken [cf. ref. 14]. }{ }^{\text {e }} \text { At } 84.6 \text { (}{ }^{19} \mathrm{~F} \text {) or } 90(\mathrm{H}) \mathrm{MHz} \text {; } \\
& 285\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 1.4 \%\right], 250\left(\mathrm{M}^{+}-\mathrm{Cl} \cdot, 27.4 \%\right), 168\left[\left(\mathrm{CF}_{3}\right) \mathrm{NO}^{\mathrm{NO}}{ }^{+}, 1\right. \\
& 69\left(\mathrm{CF}_{3}{ }^{+}\right. \text {, 96.6) (correct isotopic abundances were observed for } \\
& { }^{5} \text { By mass spectrometry }\left\{\mathrm{m} / \text { e } 329 \text { [} \mathrm{M}^{\dagger}\left({ }^{79} \mathrm{Br}\right), 0.3 \% \text {), } 250\left(\mathrm{M}^{+}-79 \mathrm{Br} \cdot, 85.8\right), 168\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO}^{+}\right. \text {, }\right. \\
& 161\left(\mathrm{CF}_{3} \mathrm{CH}^{7} \mathrm{Br}^{+}, 37.7 \%\right) \text {, and } 69\left(\mathrm{CF}_{3}, 100 \%\right) \text { (correct isotopic abundances were obtaine } \\
& \text { for } \mathrm{Br} \text {-containing species) }\}
\end{aligned}
$$

TABLE 3
Reactions between bistrifiuoromethyl nitroxide and halogenated ethenes

Substrate ($\mathrm{g}, \mathrm{mmol}$)	$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO} . \\ & (\mathrm{g}, \mathrm{mmol}) \end{aligned}$	Reaction period at room temperature (ampoule size, cm^{3})	Products a (g, mmol, \%)
$\begin{aligned} & \mathrm{CH}_{2}=\mathrm{CHF} \\ & (0.276,6.00) \end{aligned}$	1.01, 6.01	21 h (60)	$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCH}_{2} \mathrm{CHFON}\left(\mathrm{CF}_{3}\right)_{2}(\mathrm{nc}) \underline{\mathrm{b}}, \mathrm{~g} \\ & (1.12,2.93,98) \\ & \mathrm{CH}_{2}=\mathrm{CHF} \\ & (0.136,2.96,49) \end{aligned}$
$\begin{aligned} & \mathrm{CH}_{2}=\mathrm{CHCl} \\ & (0.375,6.00) \end{aligned}$	1.01, 6.01	$50 \mathrm{~min}(65)$	$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCH}_{2} \mathrm{CHClON}\left(\mathrm{CF}_{3}\right)_{2}(\mathrm{nc}) \mathrm{c}, \underline{\mathrm{~h}} \\ & (1.18,2.96,99) \\ & \mathrm{CH}_{2}=\mathrm{CHCl} \\ & (0.188,3.00,50) \end{aligned}$
$\begin{aligned} & \mathrm{CH}_{2}=\mathrm{CF}_{2} \\ & (0.384,6.00) \end{aligned}$	1.01, 6.01	30 h (60)	$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCH}_{2} \mathrm{CF}_{2} \mathrm{ON}\left(\mathrm{CF}_{3}\right)_{2} \underline{\mathrm{~d}}, \underline{\mathrm{i}} \\ & (1.17,2.925,97) \\ & \mathrm{CH}_{2}=\mathrm{CF}_{2} \\ & (0.192,3.00,50) \end{aligned}$
$\begin{aligned} & \mathrm{CH}_{2}=\mathrm{CCl}_{2} \\ & (0.582,6.00) \end{aligned}$	1.01, 6.01	$15 \mathrm{~min}(60)$	$\begin{aligned} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCH}_{2} \mathrm{CCl}_{2} \mathrm{ON}_{\left(\mathrm{CF}_{3}\right)_{2}(\mathrm{nc})} \mathrm{e}, \underline{\underline{j}} \\ & (1.28,2.96,98.5) \\ & \mathrm{CH}_{2}=\mathrm{CCl}_{2} \\ & (0.288,2.97,49.5) \end{aligned}$

(b) Results
(i) Hydrogen-abstraction reactions involving halogenoalkanes.- Essential experimental details are presented in Table 1. The mono(bistrifluoromethyl-amino-oxy)-derivatives were characterised as shown in Table 2.
(ii) Addition reactions involving halogenoalkenes.These were carried out with equimolar ratios of reactants, as shown in Table 3, to ensure 'clean' reactions. The 1,2-bis(bistrifluoromethylamino-oxy)ethanes obtained were characterised as described in the footnotes to the table and, for $\left(\mathrm{CF}_{3}\right) \mathrm{NOCH}_{2} \mathrm{CHXON}\left(\mathrm{CF}_{3}\right)_{2}(\mathrm{X}=\mathrm{F}, \mathrm{Cl})$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHFCF}_{2} \mathrm{ON}\left(\mathrm{CF}_{3}\right)_{2}$, as described previously [14; n.m.r. data].

REFERENCES AND FOOTNOTES
1 Part XVI, R.E. Banks, J.M. Birchall, R.N. Haszeldine, and S.N. Nona, J. Fluorine Chem., 16 (1980) 391.

2 On Study leave from the Pharmacy Department, The University of Athens.

3 See ref. 1 and previous parts in the Series. For reviews of knowledge of the chemistry of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO} \cdot$, see R.E. Banks in 'Fluorocarbon and Related Chemistry' (CS Specialist Periodical Reports), volumes 1 (1971, p. 109), 2 (1974, p. 223), and 3 (1976, p. 235).

4 R.E. Banks, R.N. Haszeldine and B. Justin, J.Chem.Soc. (c), (1971), 2777.

5 H.J. Emeléus, P.M. Spaziante and S.M. Williamson, J.Inorg.Nucl.Chem., 32 (1970) 3219 [the conversion $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO}+\mathrm{CHCl}_{3} \longrightarrow\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCCl}_{3}$ was first reported in 1968 (H.C. Ang, Chem. Comm., (1968) 1320]. In our hands, the reaction between equimolar quantities of CHCl_{3} and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO} \cdot$ is complete within 3 h at $21^{\circ} \mathrm{C}$, giving (CF_{3}) $2^{\mathrm{NOCCl}_{3}}$ [b.p. $95.5{ }^{\circ} \mathrm{C}$ (Siwoloboff), δ_{F} $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)+12.5$ p.p.m.] in 96% yield; methylene chloride is more susceptible than chloroform to attack by the nitroxide, and yields $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCHCl}_{2}$, as will be
described later when work on $\left(\mathrm{CF}_{3}\right){ }_{2} \mathrm{NO}$-substituted carbenes is complete.

6 See D.C. Nonhebel and J.C. Walton, 'Free-radical Chemistry: Structure and Mechanism', Cambridge University Press, 1974, p. 178, for a discussion of relevant hydrogen-abstraction reactions.
7 M. Hudlický, 'Chemistry of Organic Fluorine Compounds' [2nd (Revised) Edn.], Ellis Horwood Ltd., Chichester, 1976, p. 217.

8 No attempt was made to isolate the $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOCH}_{2} \mathrm{CF}_{2} \mathrm{Cl}$ presumably formed; $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NOH}$ was recovered from the reaction mixture and estimated [0.53 mmole from 10.65 mmole of $\mathrm{CH}_{3} \mathrm{CF}_{2} \mathrm{Cl}$ and 21.30 mmole of $\left.\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO} \cdot\right]$.
9 R.E. Banks, D.R. Choudhury and R.N. Haszeldine, J.C.S. Perkin I, (1973) 1092.

10 R.E. Banks, R.N. Haszeldine and B. Justin, unpublished and unfinished work.
11 H.J. Emeleus, J.M. Shreeve and P.M. Spaziante, J.Chem.Soc. (A), (1969) 431.

12 W.D. Edgell and L. Parts, J.Amer.Chem.Soc., 77 (1955) 4899.

13 R.E. Banks, R.N. Haszeldine and M.J. Stevenson, J.Chem.Soc.(C), (1966) 901.

14 M.G. Barlow and K.W. Cheung, J.Fluorine Chem., 12 (1978) 35.
S.P. Makarov, M.A. Énglin and A.V. Mel'nikova, J. Gen. Chem. U.S.S.R., 39 (1969) 538.

